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NOMENCLATURE

ellipse semismajor axis

ellipse semi-minor axis

length of focal point of ellipse to ellipse center
objective function to be minimized

inequality constraint function

equality constraint function
height (y-direction) of element i

Inertia matrix
ij component in inertia matrix

ij component of inertia matrix for initial orientation

length (x-direction) of element i

masgs of element i

gravity gradient torque vector
gravity gradient torque in ithdirection

unit vector along vertical from Earth's center to
spacecraft

ith component of u,

vector of variables to be optimized .
X center-of-gravity location for system A

initial center of gravity in x-direction for system

X center of gravity for element i
y center-of-gravity location for system

initial center of gravity in y-direction for system

y center of gravity for element i
Zz center-of-gravity location for system

initial center of gravity in z-direction for system

Z center of gravity for element i

angle between spacecraft vertical and local vertical

Earth's orbital angular rate




INTRODUCTION

In order to keep an operational Space Station in a stable low Earth
orbit, a control system for station-keeping and attitude control operations
will have to be used. This control system will employ control moment gyros
For angular momentum storage and reaction control systems for translational
attitude control. To minimize the size of the momentum storage system and
the amount of propellant required for reaction control and momentum
desaturation, certain overall mass properties of the Station will have to be
minimized, these being the mass cross products of inertia. With minimized
inertias, the Station would also experience minimal torques due to gravity
gradient effects. Minimizing the inertias involves relocating externally
attached payloads and appendages in a process that finds optimal moment
arms within a two-dimensional plane for each payload mass.

Because of their important effects on the gravity induced torques, the
mass properties to be minimized in this analysis are the cross products of
inertia Ixy' Ixz’ and Iyz' Through the use of mathematical programming

techniques such as those used in operations research, an optimum arrangement
of payload elements can be achieved that will minimize the cross products
of inertia and thus the controllability resources.

The methodology has been automated into an interdependent set of four
programs that can be used with the NASA IDEAS**2 program to provide a visual
representation of the initial mass placement and the final optimized mass
placement. These programs are generalized and depend only on the number of
payload elements and minimal input from an interactive user. This c.uputer
alded engineering tool allows the analyst to arrange payloads and appendages
within a Space Station geometry faster and more efficiently than the trial
and error techniques previously used by m~ss properties engineers. The
benchmark case of design will be the Dual Keel Space Station, with five
payloads. This paper will present the derivation and execution of a
methodology in which Space Station elements, primarily externally attached
masses representing payloads, can be optimally arranged to minimize the
cross products of inertia.

DESCRIPTION OF SPACE STATION ELEMENTS

The Dual Keel configuration, Figure 1, operates in a local vertical-
local horizontal (LVLH) orientation, with its vertical keels along the local
vertical direction and the solar array boom perpendicular to the orbit plane
(POP). The lower horizontal keel of the Space Station contains Earth-
viewing payloads. The upper horizontal Keel contains solar, stellar, and
anti-EBarth viewing payloads and communications antennas. Non-viewing
payloads are located at various places on the Space Station and the
pressurized modules are located at the center of the transverse boom.
Servicing equipment is to be located about the Station with front and back
sides of the keels kept free for the traverse of the Mobile Remote
Manipulator System (MRMS). The servicing and refueling facilities. Orbital
Mancuvering Vehicle (OMV), Orbital Transfer Vehicle (OTV) technology
demonstration equipment, and satellite storage and equipment areas are
located at various places along the structure.
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Gimbaled solar array wings provide full power at any relative
alignment of the Space Station and the sunline. Both solar voltaic and
solar dynamic power generation systems were used in the study and are shown
on the configuration to demonstrate a design option. Heat rejection is
provided by a combination of body-mounted radiators-on the modules and
deployed radiators along the transverse boom.

The center of gravity is located at the center of the transverse
boom and modules to provide the lowest possible microgravity environment
within the modules. A low microgravity environment will be essential for
many of the scientific experiments and commercial operations that will take
place on the Station.

One of the principal advantages of this configuration is the
excellent viewing afforded to all payloads, both externally-mounted and
internally-mounted. The configuration also allows good accommodation of
tether payloads and communication antennas. Excellent clearances are
provided for Orbiter rendezvous and berthing, and for construction,
servicing, and other operations activities. The truss-mounted subsystems
and distribution equipment are mostly pre-integrated (prior to launch) to
minimize on-orbit time, complexity, risk, and especially extravehicular
activity (EVA) operations during buildup and assembly. The module-mounted
subsystems and distribution equipment are also pre-integrated. Launch and
assembly of the Dual Keel Space Station requires a minimum of sixteen Space
Shuttle launches, including some but not all the payloads that will be
mentioned in this report. Assembly is accomplished using the Orbiter Remote
Manipulator System (RMS) and Space Station MRMS after it is installed.

GRAVITY GRADIENT TORQUE EQUATIONS

As was stated in the introduction, minimizing the cross products of
inertia will also minimize the induced gravity gradient torques experienced
by a Station. Referenceil shows that gravity gradient torques on a body are
governed by the following equation:

T = 3(&) U {[ I _l [UV » UV ’ UV ]}
g : 1 2 3
Or:
2
Tg = 3w (U 1, U"z' Uv3) Iy 112 113 Uv1
I Ip I Uv2
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Where: 'I‘8 = gravity gradient torque vector

w = orbital angular rate
[ I ] = inertia matrix

[Uv] = unit vector, along the vertical, from
the Earth's center to the spacecraft
The abdve torque equation can be reduced to a function of mass

properties of the Station and an angle 0, the angle which the Station is
pitched off the local vertical, as shown below:

2 . _ -

T8x = 3w~ [(0.5 sin 20 ) (Iyy 1,2 (Iyz cos 20 )]
2 .

Tgy = 3w L(0.5 sin 20 ) (1zz - Ixx) - (1xz cos 20 )]
2 : }

ng = 3w [(0.5'31n %0 ) (Ixx Iyy) (Ixy cos 20 )]

Two limiting conditions apply to the above equations. First, for 0=0,
the torques become solely a function of the cross products of inertia since
8in(20)=0 and cos(20)=1. Secondly, for small angles of @, the principal
moments of inertia are of the same magnitude, thus making their difference
small. This combined with the small angle approximation that sin(20) is
near zero and cos(20) is near one indicates that the torques are primarily a
function of the cross products of inertia. Thus, by minimizing the cross
products terms, there will be a minimal contribution to the torque
components.

ASSIGNMENT OF VARIABLES AND COORDINATE DEFINITION

Even though standard payload elements have a variety of geometric
shapes, only rectangular and square payloads will be considered in this
analysis in order to simplify it. Fourteen values will be assigned with
each element in each of two coordinate systems, eight in a local element
system and six in a Station center of gravity (CG) centered system. The
purpose of the two coordinate sysiems is to provide sufficient generality in
specifying element dimensions and CGs as well as their location within the
overall Station. In the local system, the element's mass and number are
assigned. The x, y, and z coordinates of the element's CG are specified
assuming (0,0,0) as a local origin, thus providing for any offset that the
CG may have from the assumed geometric center at the center of the
rectangle. The length, height, and depth values are assigned and are
aligned along the local x, y, and z axes, respectively. In the global
system, the x, y, and z coordinates of each element's geometric center arec
specified by the user to locate each payload within the overall Station.
The global x, y, and z coordinates of each element's CG are derived by one
of the programs from the sum of the local CG coordinate and the global
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geometric center coordinate. See Figure 2 for a description of the two
coordinate systems.

The coordinate system used in this analysis is a standard cartesian
coordinate system with the origin centered at the middle of the transverse
(solar array) boom. The x axis is along the transverse boom, the y axis is
along the keels, and the z axis completes the system by pointing along the
direction of flight (See Figure 1.)

In the program formulation it is desirable to force all coordinates to
be strictly nonnegative real numbers. This is done by biasing all of the
coordinates by adding the point (1000,1000,1000) to all the global
coordinates. This essentially locates the Station far out in quadrant I of
an imaginary three-dimensional coordinate system. The inertias of the
system are not changed due to the transformation of coordinates because the
ihertias are taken about the transformed system's center of gravity.

The representative payloads used in this analysis is described in Table I.

1

Table I. Descriptioh of payload elements

Number Description Weight Length Height Depth
(1) Name “(kg) (m) (m) (m)
1 Transition Radiation &
' Ion Calorimeter (TRIC) 5,749 3.0 5.5 2.7
2 Pinhole Occulter Facility 3,602 3.6 4.6 2.7
3  Production Unit 4,500 4.3 6.4 4.3
y Space Construction

Experiment 4,001 29.0 24 .Y 20.1
5 Orbital Transfer Vehicle

Servicing Experiment 8,001 8.5 19.2 8.5

MATHEMATICAL PROGRAM FORMULATION

I. INERTIAL CONSTRAINTS

In mathematical programming, one form an optimization program can take
is to minimize an objective function of some set of variables subject to a
certain number of constraint functions of these same variables. A program
would attempt to solve the problem:




Minimize F(X)

Subject to: GJ(X) S0 j=1,n

Hk(X) =0 k = j,m

Where F(X) is the objective function, GJ(X) is one of n inequality

constraint functions, Hk(x) is one of m equality constraint functions, and

the vector X is the set of variables to be optimized. This analysis will
derive an objective function, six equality constraints, and n inequality
constraints where n will depend on the number of payloads.

The objective of the analysis is to minimize the three cross products
of inertia for n elements about a given Station support structure. .The
structure itself has its own mass properties given by:

mo = the Station mass

xy ° Ixz ,» 1 7 " the initial cross products of
Yo o Y% ‘inertia without payloads

The final optimized location of the Sitation with payloads will be

(xcg’ycg'zcg)ﬁ Each element will have the following characteristics:

mi= mass of it’h element

xi,yi,zi= X, ¥, and z global coordinates of

each element's CG

The overall inertia of the Station with payloads is the objective function F
wnich can be expressed as the sum of Station terms and payload terms:

F = Station terms + Payload terms

Where:
Station terms = 1 + 1 + 1
Xy, XZ yzO
11
Payload terms = | )L, _im (x;)(y))| * | ll 1oy (x;)(z )|
-n
+| li=1mi(yi)(zi)|
Each of these terms changes if the Station CG is moved from (x Y o ,2 )
B, "©¢8, c8/
to (xcg’ycg’zcg)' For the Station terms, this inertia change is added to

the initial cross product of inertia due to the parallel axis theorem. For
the payload terms, the inertial change is multiplied directly into the term.



Thus the objective function or overall Station inertia to be minimized
becomes:

F=(I_+m(x _ =-x My -y J)l+[I +m(x ~-x )z =12z )]
Xy, © cg, cg cg, cg Xz o'"cg, cg cg, cg
. n
+ L Iyzo+ mo(ycgo- ycg)(zcgo- zcg)J ¥ l li-1mi(xi xcg)(yi— ycg) I
s m (k- x Mz-z ) |+ | Sm vy oy, ) (22, ) | (1)
i=171"71 cg i cg i=17171 cg i Cg .

Since the products of inertia can be negative, the absolute value of each of
the payload product terms is taken so that any cancelling out of terms will

not occur. The xcg’ ycg’ and zcg of the Station and Xi0 Vi and (N of each

payload are the unknown variables to be found. The inertias about the final
optimum CG once they are known are what are important to the gravity

gradient control of the Station. When function F is minimized, all products
of inertia are also minimized with respect to the optimum center of gravity.

The discontinuous absolute value terms in the objective function make
the problem very difficult to solve in closed form. Using the techniques
described in Hillier and Lieberman, Ref. 2, however, the three absolute
value terms can be converted into three continuous terms in the objective
function and three continuous terms that are included as three equality
constraints in the set of constraint equations.

This is done using six auxiliary variables as shown in the following
equations:

F=1 Ixy°+ !.no(xcgo‘ xcg)(ycgo- ng)] + L IXZO+ mo(xcgo- xcg)(zcg - zcg)]

+ [I _+ mo(ycgo- y )z - zcg)] + (R1+ S1) + (R2+ SZ) + (R

S 2)
yz, cg’ “cg ¥ 3) (

3

Where the three equations in the constraint set are:

N
(Ry= 80 = Ly ymy (k= x Iy =y ) (3)
(R-8) =) m(x-x )z- (4)
2 2" i=11" 1 xcg zi ch)
-Nn
(Ry= S50 = Ly g0y (v;= ¥ )(z- 2.) (5)

The differences in the auxiliary variables in the constraint set and their
corresponding sums in the objective function are what convert the




discontinuous absolute value terms in the objective function to six
continuous terms in the overall problem.

The inertias are taken about the center of gravity of the structure,
which is unknown until the optimization is complete. The next three
constraints serve as the mathematical definition of the three coordinates of

the overall center of gravity. These are given by xcg’ ycg' zcg:
n
Xog” )ismixi (6)
M ~
n
Yog" Li-1™yYg (1
M
‘n
2" Liq™2 (8)
M

Where the total mass of the Station with payloads is M = mo+ Z?=1mi.
In order to get equations (6)-(8) into the form of an equality

constraint, H(X)=0 , a transposition is done. To get equation (6) into the
form: ' )

n

Yo oom.x,

x08 i=1"i"f =0
M

A similar transposition is done for equations (3)-(5). To transpose
equation (3) into the form: )

‘n
zi=1mi(xi xcg)(yi ycg) + 8- R =0

Thus the six equality constraints consist of those defining the center
of gravity, Equations (6)-(8), and those handiing the auxiliary variables
for the absolute value conversion, Equations (3)-(5). Only the CG
coordinates of the payloads were used in the inertial constraints, since
irnertial constraints require iner.ial coordinates.

1I. GEOMETRIC CONSTRAINTS

A. ELEMENT-ELEMENT INTERACTIONS

Inter-element interference criteria should be adhered to in order to
preclude non-feasible solutions. Two means of modeling non-interference
criteria are described below.




The interference problem is generally a three-dimensional problem. One
must prohibit interference of one object with another object about the x, ¥,
and z-axes. In this case, since no equipment can be placed on the front or

back of the support truss, the problem is then reduced to a two-dimensional
problem by eliminating the z-axis.

The problem is now to prohibit overlapping of any region defined by
element i from interfering with a region defined by element j in the height
and length dimensions. It is deslirable to have a closed neighborhood around
each payload that can be described by a continuous mathematical equation,
such as a circle or an ellipse. A mathematically discontinuous closed
neighborhood such as a square would not provide meaningful solutions and
would be difficult to code into the optimization routine. One way this
neighborhood can be achieved is to define a "constraint ellipse"™ such that
the line of the ellipse passes through the points marking the maximum
distance from the geometric centers of elements i and j when the elements

just meet at a diagonal.(See Figure 3.) This methodology was derived from
Reference 3. '

The standard equation of an ellipse is given by

x2 2
AR (9)
a2 b2
for the semi-major axis located about the x- axis, and
2 x2
Y+ X oy (10)
a2 b2

for the semi-major axis located about the y- axis where a and b are given as
the length of the semi-major and semi-minor axes, respectively. Since the
elements i and j both have 1 and h values, the geometric center of element
J on the constraint ellipse is defined as

[ 172 (1i+ 1j) . j/z (ni+ hj) ] (11)

The geometric center of element i is defined as the origin. In order to
minimize the maximum excursion of one element to another, the coordinate
with the greatest value would be considered the direction of the semi-major
axis. In order to determine the a and b values of the ellipse, the focal
point of the ellipse is assumed to be located on the semi-major axis at one-

half the sum of the length or height of the ith and jth elements, depending

on the orientation of the semi-major axis. The distance from the center of
the ellipse to its focal point is given as

d-=a - Db (12)

Using equations (9) or (10), (11), and (12), the a and b values can be
determined under the following conditions:




for (li+lj) 2 (hi+hj),

2 2 4 2 2
b= 4 (hi+ hj) +\v46 ghi+ hj) + 64 (hi+ hj) (11+ lj) (13)
32

a = b2+ (1,+ 11)2/ y (1)

and for (hi+ hj) 2 (li+ lj),

2 2 Y 2 o

b =4 (1i+ 13) + )6 (11+ 1j) + 64 (1i+ 13) (hi+ hj) (15)
32

a° = b+ (h+ hj)Z/ 3 (16)

The constraint is now imposed in a manner such that the center of gravity of
element j can not enter the region defined by the constraint ellipse and is
given by equations (17) and (18):

(xJ - xi) . (yj -y.)

5 5 2 1 (17)

or

i J + i J 2 1 (18)

Thus two forms that the inequality constraints, G(X) £ 0, can take are
equations (17) and (18).

Another method of defining - constraint neighborhood around a payload
is Lo circumscribe a "constraint circle" of fixed radius around it. The
radius of this circle for element i is the distance from the geometric
center to one of the corners and is denoted by ri. In order to distinguish

between long, thin payloads and short, square payloads, an aspect ratio
criterion was used. If (li+ lj)/(hi+ hj)z 1.1 or (hi+ hj)/(li+ lJ)Z 1.1,

ellipse interference paths were used between two payloads, where 1.1 is an
arbitrary constant allowing for only 10% deviation from a square. 1In ti"
case of short, square payloads where (1.,+ 1 )/(hi+ hj)s 1.1 or

N




gt nJ)/(li+_1J)s 1.1, circular interference paths were used between two

payloads. The use of circular interference paths for square payloads avoids
the exclusive use of ellipses that could cause problems in the interference
geometry of square payloads. Given two payloads that might interfere with
one another, a circular constraint equation states that the distance between
the geometric centers of the two payloads must be greater than or equal to
the sum of the radii of their corresponding constraint circles. See Figure
3. The geometric center to geometric center distance is expressea using

the standard cartesian distance formula:

(x,- xj)2+ (y,- yj)z 2 (e | (19)

This equation is transposed into an inequality constraint by the following:
2 2
- - - <
(r‘i+ r'J.) (xi xj) + (yi yJ.) £ 0 (20)

Another form the inequality constraint, G(X)s0, can take is equation (20).
Thus the n number of inequality constraints will consist of G(1)-G(n)
inequalities that preclude the interference of one payload with another,
using either elliptical or circular interference equations. An equation is
generated for all the possible non-redundant combinations of interaction
between n payloads. Only the geometric center coordinates of the payloads
are used in the geometric constraint equations, since geometric constraints
require geometric coordinates.

B. STATION-ELEMENT INTERACTIONS

In the constraint formulation, the physical barriers of the Station
must be considered in order to prevent payload-Station interference. This
was accomplished by considering each rectangular region of the Station
structure as a region to be optimized, with the exception that these regions
had fixed explicitly defined coordinate locations. Non-redundant
constraint equations are generated in G(1)-G(n) for Station-element
interactions, but none are generated for Station-Station interactions since
these would be meaningless because the Station elements are not allowed to
move. The payloads must not interfere with the support trusses but be near
them within allowable tolerances. The payload element can not be in free
snace in the interior of the Station solely for inertia optimizing purposes.
An envelope well outside the perimeter of the Station outside of which the
payloads could not move was also specified.

Viewing and contamination requirements of some missions can impose
constraints on the elements. These constraints are included in the
inequality constraint set G(1)-G(n) if a range of values is permitted or in
the equality constraint set H(X) if an explicit fixed location is desired.
These types of constraints were not used in this analysis, but it is obvious
that payloads of the size of the Space Construction Experiment (Payload 4)
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should be placed outside of the center area of the Station because of their
size.

ANALYSIS AND RESULTS

The computer code for Automated Design Synthesis (ADS) was selected
to support the present analysis. ADS, described in References 4§, is an
automated optimization program capable of providing efficient optimization
for a variety of problems. This particular problem, nonlinear in nature,
Wwas solved by the use of a combination of a strategy search and a one-
dimensional search. Because the equations in both the objective function
and the constraint set are at most quadratic in nature, relative minima must
exist in their solutions. With this knowledge, Reference 4 suggests the use
of sequential linear programming as a strategy and the modified method of
feasible directions for the minimization. The one-dimensional search
algorithm recommended was to find the minimum of an unconstrained function
by first finding the bounds on the solution and then using polynomial
interpolation. The solution of the problem is as follows along with the
initial results of this type of analysis with a representative initial
placement of the payload elements. The (1000,1000,1000) bias has been
removed from all the coordinates.

Overall Center of Gravity (m)

Initial Optimized
X 0 -0.68
y 0 -0.85
z 0 0

Inertias (kg-mz)

Initial Optimized A%
6 . 5
Xy 2.85600 x 10 8§.31112 x 10 ~711%
) 6 ‘ 6
XZ 1.04530 x 10 1.04530 x 10 0%
5 5

yz  4.00186 x 10 4,003019 x 10 +0.03%

1




Payload Locations (m)

Payload X Y yA
Initial| Final A Initial Final A Initial} Final A
1 5 3 -2 35 33 -2 0 0 0]
2 -5 : -8 -3 =35 -45 |-10 0 0 0
3 -5 | -4 +1 16 [ <1 S0 <
! 5 8 3 =73 -90 |-17 0 0 0
5 10 2 -8 =27 =37 |-10 0 0 0

The payload initial positions and their displacements as a result of
the optimization are shown in Figures 4 and 5, respectively. A comparison
between the initial payload orientation and the final optimized orientation
indicates that each payload shifted significantly, implying that the
payloads were not placed in optimal initial positions. The two elements
above the solar array boom shifted closer to the Station CG. The two
elements below the solar array boom displaced downward as well as shifting
more toward the Station CG. The Space Construction Experiment also shifted
downward. This downward shifting would not be intuitively obvious in a non-
automated procedure to minimize the inertias, since the natural inclination
would be to move payloads below the solar array boom upwards toward the
Station CG. This points out an advantage to a computer aided procedure. The
final optimized positions of the payloads are not ideal for their attachment
to the surrounding truss structures with short connecting trusses. This
aspect of the problem could be contolled by adding constraints to restrict
the movement of the payloads along the trusses of the support structure.

The overall Ixy of the Station was reduced by 71%, which would result

in a small reduction in the gravity gradient induced torque which would in
turn contribute to a small savings in the attitude control propellant over a
certain mission length. This can be seen by referring to the gravity
gradient torque equation for Tg . The increase of 0.03% in Iyz would have

. Z ,
negligible effects. The small changes in the inertias involving the z-axis
cre due again to the fact that this is primarily a two-dimensional problem.
The optimum inertias were derived from the following equations once the
final payload and overall CG positions were known:

Xy~ L Ixyo+ mo(xcgo- xcg)(ycgo- ycg)J + Ry~ S,) (21)
I.,= L Ixzo+ mo(xcso- xcg)(zcgo— zcg)] + R,- s,) (22)

12




1 = - - - p
vz L lyzo* mo(ycgo ycg)(zcgo ch)J + R3 S3) (23)
Even though this analysis does not show any startling results, it
demonstrates the ability to rapidly optimize the placement of payloads on a
Space Station.

CONCLUSIONS

The optimization methodologies used in operations research can be
applied to the management of mass properties of a Dual Keel Space Station
through the placement of discrete masses about the Station. The masses to
be placed are the externally attached payloads. The payloads can be placed
in such a manner that the inertia cross products can be reduced, thus
minimizing the induced gravity-gradient torques on the Station. With the
torques minimized, the momentum buildup over an orbital period will also be
minimized.
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